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A numerical method for studying migration of voids driven by surface diffu-
sion and electric current in a metal conducting line is developed. The mathematical
model involves moving boundaries governed by a fourth order nonlinear partial dif-
ferential equation which contains a nonlocal term corresponding to the electrical
field and a nonlinear term corresponding to the curvature. Numerical challenges in-
clude efficient computation of the electrical field with sufficient accuracy to afford
fourth order differentiation along the void boundary and to capture singularities aris-
ing in topological changes. We use the modified immersed interface method with
a fixed Cartesian grid to solve for the electrical field, and the fast local level set
method to update the position of moving voids. Numerical examples are performed
to demonstrate the physical mechanisms by which voids interact under electro-
migration. © 1999 Academic Press

1. INTRODUCTION

In many physical problems, mass transport along interfaces such as surface diff
and grain boundary diffusion becomes increasingly important as the characteristic le
scale is reduced. The diffusional mass transport is governed by a relevant chemical pot
along the interface. Converging or diverging atomic fluxes cause motion or relocatio
boundaries. The dynamics of these processes is of great interest to material scientis
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biologists. There is a large literature on this topic. We refer the readers to two rec
survey articles by Mullins [14] and Cahn and Taylor [5] and the references therein. T
problem considered in this paper involves the evolution of voids under electro-migrat
in a conducting metal line where the driving forces for diffusion are the gradient of tl
curvature and the electric potential along the void boundary. The normal velocity of 1
void surface is given by the partial differential equation (PDE)

Un = As(C1¢ + Cox), (1.1)

whereAg is the surface Laplaciam, is the potential function associated with an applied
electric field, andr is the mean curvature along the boundary; for a circle, the curvature
a positive constant. The coefficier@g, C, are related to the physical constants

B eDsQl/Sz* _ DSQ4/3VS

C,= , = , 1.2
1 T 2= T (1.2)

wheree is the charge of an electrof is the atomic volumeZ* is a phenomenological
constant related to the effective valence of an atkgns Boltzmann’s constan is the
temperatureys is the surface energy. The const@ntis defined as

Dés
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whereds is the thickness of the diffusion IaydD,;‘e*QS/ keTk js the surface diffusion coeffi-
cient, andQs is the activation energy for surface diffusion. The electric potept&dtisfies
the Laplace equatio¢ = 0, with no-flux boundary conditiog\ﬁi =0 onthe void boundary
as well as other appropriate boundary conditions on the computational boundary.

For a void bounded by a closed surface, it can be shown from the divergence theo
that the void conserves its volume (or area) during surface diffusion. In Eq. (1.1), the f
term, As¢, is a nonlocal driving force which tends to drift the void along with the electri
current. The second termyx, is a fourth order nonlinear term which only depends on th
local geometry. The boundary evolution governed by the surface Laplacian of the m
curvature, as studied by numerous authors [3-5, 14], can be regarded as a gradient
with H~ inner product for the surface area given by the equation

dA _ /UanSZ /KASKdSZ —/ |Vsc|? ds. (1.4)
dt s s s
Such a process tends to minimize the surface area while conserving the volume. Anisot
can be included in both the free energy and the above inner product in a variational f
[5]. Another type of gradient flow which minimizes the surface area while conserving t
volume with L? inner product isc — k, wherex is the average of the mean curvature
along the interface. These two types of gradient flows correspond to two limiting ca:
of combined surface diffusion and growth process. The connection between sharp
diffuse interface motion laws via a gradient flow can be found in [19]. In general, surfa
diffusion problems admit few analytical results. Due to the intrinsic nonlinearity and la
of a maximum principle, smooth solutions only exist locally in time while topologica
singularities occur in finite time. Surfaces (curves) can merge or pinch-off in both tv
and three dimensions. A linear stability analysis [15, 18] indicates Rayleigh instability
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long wavelength perturbations. It has been shown using a perturbation analysis [3] the
only stable equilibria are surfaces with constant mean curvature which locally minirr
the surface area. The dynamics and stability of self-similar pinch-off were also stuc
in [3]. For a closed plane curve, suppasé€c, t), y(a, t)) is some parametrization of the
curve. Define the metrig(a, t) = 1/x2 + y2 and angled = tan1(y,/X,). Following the
derivation given in [16], we have

19U,

gt(aa t) = eozUna Gt(avt) = _a 9 )

whereU, is the normal velocity of the curve. Using the fact6s=6,/g and L = é%
wheres is the arc length, we get the time evolution equation below for the curvatwrth
respect to the arc length

32U,
Kt = — s — k“Up.
If Un = Ksgsy then
Kt = _KZKSS — Kssss (1-5)

We can see from the evolution equation that the first terrTxss, is a second order and
nonlinear term corresponding to a backward heat equation which causes instability, v
the second term; kssss is @ linear fourth order stabilizing term. Through simple linearize
analysis we can see the long wave instabilities. If we multiply the equatiorabd integrate

it with respect tcs, after integration by parts we have the energy equation

d I_:I'Z - 2.2 t 2
a/o EK dS=3/o /{KSdS—/O ks ds,

whereL is the total length of the curve. A similar type of equation, discussed in [7], sho
that a closed curve will converge to a circle only if its initial shape does not deviate too m
from a circle; otherwise singularities may occur in finite time. This phenomenon is &
discussed through a modified Kuramoto—Sivashinsky equation for nearly planar inter
motion for phase transitions [2].

In this paper we shall address some difficulties in the numerical implementation of rr
ing boundary problems arising in electro-migration voiding. These include (a) construc
an efficient and accurate Poisson solver for the equations defined on arbitrary dom
(b) tracking topological changes (breaking, merging) along a moving interface, (c) ev
ating the surface Laplacian operator along the interface. We wish to explore the possil
of simulating moving interfaces on a fixed Cartesian grid without having to re-mesh as
interfaces migrate. For this purpose, we introduce the modified immersed-interface-me
(IIM) developed in [10, 11] to solve the Poisson equation for the electric potential. We st
that the system can be preconditioned so that the convergence is almost independent
mesh size. We use the local level set method to update the interface according to Eq.
We will derive a general formula for the surface Laplacian operator in Cartesian coordin
along the interface represented implicitly by a level set function. As discussed in [5],
level set function for a geometric PDE cannot be arbitrarily chosen. Since each conto
the level set function moves according to its own curvature variation, and because o



284 LI, ZHAO, AND GAO

lack of a maximum principle, different contours may cross each other. We adopt a modif
level set function method [22] which allows us to get around this problem by (i) usir
the local level set method so that only those level sets that are very close to the inter
are involved; (ii) sticking to the signed distance function as our unique choice of level -
function; and (iii) extending the quantities at the interface, if necessary, to other level <
so that they are normal to the interface. It has been shown [22] that this extension of
normal velocity maintains the normal distance between different contours. After these m
ifications, the level set method can be used efficiently to capture moving interfaces for
eletro-migration problems discussed here. An alternative approach was proposed in [9
using the finite-element formulation with adaptive re-meshing. The numerical algoritt
that we propose in this paper has the advantage of simulating a moving interface on a f
Cartesian grid, which demands a relatively small amount of computational resources
may be desirable as a practical analysis tool for many applications.

2. OUTLINE OF THE NUMERICAL ALGORITHM

We consider a moving boundary with the normal velocity given by surface diffusic
under a linear combination of electrical potential and surface tension,

82
Uph=As= @(Cld’ + Cox), (2-6)

whereg is the electrical potential which is a solution of the Laplace equation on the dom:
outside of voids (see Fig. 1}, is the curvature along the boundary of voids which are
immersed in a fixed Cartesian grid over the computational domain.

Below is an outline of our numerical algorithm along with reference to the speci
sections where more details are given.

Outline of the Method

e From the level set function at a time levd, find necessary interface information
such as the normal and tangential directions, the projections of irregular grid points,
curvatures, etc.

e Use the IIM to solve the electric potential function; see Section 3.

o Find the component of the normal velocity of the surface due to the electric potenti
see Section 4.1.

e Find the component of the normal velocity of the surface due to the curvature variatit
see Section 4.2.

e Find the normal velocity of the level set function.

e Update the level set function.

o Reinitialize the level set function.

e Go to the next time level.

3. AFAST ALGORITHM FOR COMPUTING THE ELECTRICAL
POTENTIAL ON IRREGULAR DOMAINS

We need to solve the Poisson equation

A¢ = f(Xv Y), (X’ Y) € Ql? (37)
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FIG. 1. A sketch of a computational domain. The regiongnfare voids. We want to track the motion of
their boundaries.

A (3.8)

N0,
wheres is the arc length of the interfad«2,. The solution is defined on a multi-connectec
domain with given boundary conditions 02, (see Fig. 1). There is also a compatibility
condition if the boundary conditions are of Neumann type. In our electro-migration probls
v(s)=0.

In recent years, the level set method, first proposed in [16], has become a powerful
for computing moving boundary/interface problems, especially for problems that invc
topological changes and/or in three dimensions. We intend to present a simple, second
discretization method for solving (3.7) with the interface described by a level set functi
There are a variety of methods based on finite difference for this kind of problems, for ex
ple, the capacitance matrix method and fast methods based on integral equations. How
many of these methods require explicit information about the boundary of exclusions, ¢
as spline interpolations or Fourier expansions for closed regions. It is not clear how to
plement these methods if the boundary is described by a two dimensional level set fun
because the information is given only at grid points. Our discretization method is base
the immersed interface method [12, 21], and is designed for treating Neumann bour
conditions under the level set formulation with an efficient preconditioning technique.

To take advantage of a fast Poisson solver, we extend the equation to the entire rectatr
region

A¢
gt
an T

f(x,y), (X,y) € Q21U Q> (3.9

(s), (3.10)

where f (X, y) is defined as zero if2,. We use at+ sign to indicate the limit of a function
when approaching from the exterior @. The solutiony inside 2, depends on how the
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jump conditions along the interface are specified. If a single layer is introduced, there

jump in the normal derivative. If a double layer is introduced, the function is discontinuo
across the interface. Usually, we cannot require the function and its normal derivative tc
continuous across the interface at the same time. Following the idea introduced in [12,

we either introduce an unknown jump in the solution and require the normal derivative
be continuous or vice versa. However, to force the solution to be continuous may lea
rapid changes in the function, and an ill-conditioned system for the unknown jump in t
derivative.

Now consider the functionai (g),

Ap = (X, y), (X,y) € Q1UQy,

3.11
[#]lag,(S) = 9(s), [pnllag, =0, (3.11)

where the jump acrosK2; is the difference between the limiting value from the exterior of
the voids and that from the interior. Since the jump conditions always refer to the interfz
922, we willomitthe explicit reference @2, from now on. The solutiog (g) of the system
above is a functional of the jumgx(s) with [u] = g(s). We are interested in the particular
g(s) such thabe (g)/dn =v(s). This corresponds to a double layer in the potential theon

3.1. Discretization of the Interface

In order to construct a fast and convenient numerical algorithm for moving interfa
problems, we adopt a uniform Cartesian grid with a fast Poisson solver and use the |
set method to update the interface at each time step.

The grid points are divided into two categorigsgulargrid points are those located away
from the interface anitregular ones are those located where the interface cuts through t
standard five point stencil. Our attention is focused on the irregular grid points.

A two dimensional level set functiop(x, y), wherep (X, y) =0 describes the location
of the interface, is introduced. In the level set formulation, the interface information is or
given at grid points. To solve for the unknown jump functis) so that the the solution
satisfies the Neumann boundary condition, we need to discggxas well. In other words,
we need to find values af(s) at discrete points on the interface. Too many points oftel
lead to a large and ill-conditioned system which also means more storage. Too few pc
often lead to loss of accuracy. Our strategy is to find the projections of irregular grid poi
on the interface. LeK = (x;, y;) be an irregular grid point. Its projection&’ = (x*, y*)
can be found using the following procedure (see also Fig. 2):

1. Find the unit steepest ascent directioat X:

Vo

= . 3.12
P = el (3.12)

2. Locate the projection of on the interface along the directiqn
X* =X+ ap, (3.13)

whereq is determined from the quadratic equation

9(X) + Vol + 3(p" He(p)p)a? =0 (3.14)
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FIG. 2. Finding the control poinK* from an irregular grid pointx;, y;), ¢(xi, y;) <0. It can be chosen as
the projection of the grid point on the interface.

and Hey) is the Hessian matrix af,

Pxx  Pxy
H — , 3.15
= |0 0 (3.15)

evaluated ax.

We only defingg(s) on those projections from a particular side, for exampie, y) > 0.
We will call themSet. The projections from the other side of the interface are c&lksgl.
The values ofy(s) on those projections iBef; can be defined via interpolation using the
values defined at those Bej. The interpolation scheme will be explained later. Note th:
we do not need t@rder the projections where the unknown jumps are defined, a ve
important feature of the level set formulation compared with the Lagrangian formulatic

3.2. Discretization of the Poisson Equation with Jumps

Given jump conditions across the interfai®,,

[#l=9(), ¢l =0, [fl=1"(5 (3.16)

at all projections, we use the immersed interface method to solve the Poisson equ
The essence of this method [10—-12] consists of a finite difference scheme with the star
discrete Laplacian plus a correction term at the right hand side associated with irrec
grid points, leading to a discrete system which can be solved by a fast Poisson sc
The details can be found in [10-12]. The interface information such as the tangential
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FIG.3. Adiagram of the local coordinates. The interface can be expresgéghasith £ (0) = 0 ands’(0) =0.

normal derivatives and the curvature at projections is obtained from the values of the le
set function at grid points plus a bilinear interpolation; see [12] for details. A key part
evaluating the first and second derivatives of the jugii]ong the interface.

Evaluation of the derivatives of the jump functigf]. The idea is to use the weighted
least squares interpolation [12] to approximate the derivatives of the jump along the interf
at a given projectioX* = (x*, y*). We use the local coordinates(at, y*) in the tangential
and normal directions (see Fig. 3),

£ = (X — x*)cosd + (y — y*) sing,
. (3.17)
n=—(X—x*singd + (y — y*) coss,

whereé is the angle between theaxis and the normal direction, pointing to the region
of Q1.

In order to use the weighted least squares interpolation, we take a smaltxirelgered
at(x*, y*) with a radiusy; usuallyx is between Bh and 4 so that at least three projections
from Sef are enclosed. If we can find the signed arc length starting fromy*), we can
use an appropriate interpolation scheme to approximate the derivatives of the jump func
with respect to the arc length. Ne@e*, y*), the interface has the form

£() = Cn?+ Dn* + O(n%). (3.18)

Let X5 = (X7, y7) be a projection irSej but different from(x*, y*). We can determine
the constant€ andD using the interface information. Denate;, n,) as the unit normal
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direction of the interface; we have

2Cn1 + 3D77%

V/1+ (2Cn: +30n3)°
1

V/1+ (2Cn: +30n3)°

= —N,,

(3.19)

=n§'7

where(&1, n1) are the coordinates under the transformation (3.17). We arrive at the follow
linear system of equations f@ andD:

CnZ + D = &,

., (3.20)

2Cn1+3Dn; = ——.
Ng

In other words, the curve is approximated by a Hermite spline interpolation beXvesrd
X3. Once we have solved f@ andD, we have an analytic expression for approximatin
the interface. The arc length betwehandXj is determined from

N1
= =/ V1+ (2Cn + 3Dp2)2dy. (3.21)
0

This definite integral can be approximated by the Simpson rule or a Gaussian quadr
formula using the approximate analytic expression of the interface. In this way, the
length is evaluated to third order accuracy, which is necessary for the second order sc
for the Poisson equation. Note that the distance between two points on the interface is
second order approximation to the arc length and is not accurate enough for our requirel
Finally, we need to determine the sign of the arc length according to the relative posi
betweenX* andXi,

&:{'Sﬂ if (X§¥—X*-t*>0 (3.22)

—|s| otherwise

wheret* is the tangential vector at*.

We use uppercase letters to express discrete quantities. For exa(gles the discrete
form of g(s). Once we have the signed arc length betw¥érand other projections from
Set, it is easy to interpolat&(s) from Sef to obtainG’(s*) andG”(s*) at any projection
on the interface, either et or in Sef;, using the following weighted least squares
interpolations,

GsH= > aG(Xp). (3.23)
X;eSetno

G'(sH= Y BGXp, (3.24)
XpeSeino

G'sh= Y nGuXp. (3.25)

XpeSeino
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wherewy, Bk, andyg are the coefficients of the interpolation which is determined from th
system

2 G 1 0 0

kS | [, B.4]= | O or 1 or 0], (3.26)
> 0 0 1

dek%

wheredy is the distance betweeX and X* and o, 3, and~ are the vectors whose
components are the coefficients, Bk, andyk. These are under-determined systems witl
the same coefficient matrix of full row-rank. We use the least squares solution from |
pseudo-inverse. The solution minimizes the Euclidean norm among all possible solutic
With the weighted least squares interpolation, the errors in the interpolation vary smoof
and those points closer to the center are given more weight than the other points.

With the scheme discussed above for evaluating the juph@iid its first and second
derivatives, the rest of the implementation of the IIM method is straightforward. The proc:
of the discretization can be written in a matrix—vector form:

A® + BG=F. (3.27)

Here A is the discrete Laplacian using the standard five point steiddl,the deviation of
the difference scheme due to the jump in the solution, lanid the source term plus the
correction terms at irregular grid points.

3.3. Discretization of the Residual

We want to findg(s) such that(g) satisfies the Neumann boundary condition
dF = v(s). (3.28)

For an arbitrary ¢], the solutiong (X, y) usually does not satisfy the equation above. The
discrete difference of the two sides is the residual. An iterative scheme is needed L
(3.28) is satisfied to a given accuracy. Taking into account adpfenclosed in a circle
surrounding a projection, the residual, once again, can be computed using the weig
least squares interpolation,

D1(G(s) = Y aij Bij + C(9), (3.29)
ij
whereC(s) is a vector of the correction terms at the projections. We refer the reader to [

for the details.
The matrix—vector form of such discretization and the interpolation can be written

terms of® andG as
A Bl[® F
< oflel=lv) @0

The Schur complement f@ then is

(D-—EA'B)G=V-EAF

.

(3.31)
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We use the GMRES method to solve the much smaller Schur complement system.
iteration involves one fast Poisson solver and an interpolation scheme to evaluate the |
ual. A preconditioning strategy is used to accelerate the convergence. The initial gues
little effect on the number of iterations. So we simply take the initial guess as zero vec
Note that if the interface is a circle, and the domain is infinite, then the solution is ind
zero (see the discussions in the following section).

3.4. A Preconditioning Strategy

Since the homogeneous Neumann condition is prescribed on the bouidarghe
solution in the interior of the voids is defined only up to an arbitrary constant. However,
conditition number of the Schur complement depends on the constant solufipn Tiis
situation is remedied by setting the solutiorflpto be the average value of the solution a
all irregular grid points from the other side of the interface at each iteration.

The preconditioning techniques discussed above can be justified using the theo
integral equations. The solution of the Poisson equation can be written as the distribt
of sources and dipoles along the boundaries,

1 1 3
P = /ml pa(s)logix — X(s)| ds+ > /892 pa(s) oo log|x — X(s)|ds. (3.32)

The source strengths;(s) and u,(s) are determined from the boundary conditions o
0Q21 ando2,. Several fast Poisson solvers for problems on irregular domains are base
solving the integral equations. However, for a bounded domain, the number of unkno
usually is more than double that in the approach described here because of an addi
unknown source strength alot§2;. Note that the source strengty(s) corresponds to
the jump of the solution across the interfa@,. Since the solution inside the voids can be
any arbitrary constant, we need to have an additional condition to uniquely determine
solution. A convenient condition is to define the constant as the average of the limit solu
from ©, side approaching to<2,, that is,

C=/ ut(X)ds (3.33)
0822

This condition minimizes the jump in the solution, which is equivalent to minimizir
the condition number for the Schur complementa i, is a single circle and the overall
rectangular domain is very large, then the solution is close to being axi-symmetric, anc
will obtain the convergence in a couple of iterations.

Our numerical examples indicate that the number of iterations for solving the Sc
complement is small and is independent of the grid size. It turns out this is also true fol
cases wher¥ is not zero; see the example in Section 3.5.

In practice, the matrices and vectors in (3.30) and (3.31) are never formed explicitly.
algorithm is outlined below:

Outline of the algorithm to evaluate the electrical potential

1. Initialization: Setting up the grid and the boundary condition®@n; indexing the
grid points as regular or irregular; obtaining projections of irregular grid points; evaluat
the normal direction and the curvature information of the interfaeg at the projections
of irregular grid points. Itis affordable to store these data since the number of irregular
points is roughly the square root of the total number of grid points.
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2. Finding the right hand side of the Schur complement system (3.31). This can be d
by settingG =0 in (3.27) to obtain the solution of the Poisson equation and calculating t
residual of (3.31).

3. Applying the GMRES iteration with an initial guess Gf The main process of the
GMRES method requires only matrix—vector multiplications. This involves essentially tv
steps in our algorithm. The first step is to solve the Poisson equation, which correspc
to the matrix—vector multiplication in the GMRES method. The main cost of this stage
obtaining the correction term at each irregular grid point due to the jump in the solution. T
fast Poisson solver that we employed is the modified HWSCRT routine from FISH Packe
The second step is to interpolate the solution of the Poisson equation to obtain the resi

3.5. Numerical Examples for the Evaluation of the Poisson Equation

We provide one example with different boundary conditions to show the efficiency of t
algorithm proposed above. This is the most costly part in the simulation of electro-migrat
voids. We want to verify second order accuracy of the solution procedure, and more img
tant, also to verify the assumption that the number of iterations is nearly independent of
mesh size except for a factor of lag

We construct an exact solution:

p(x,y) =—3logr +r2,  r=/x2+y2

3.34

The boundary2; is the unit rectangle-1 < x, y < 1. The interior boundarg 2, is an
ellipse
X2 y2
Casel. The Dirichlet boundary condition dif2; and the normal derivative boundary

condition ond 2, are given using the exact solution. The first part of Table | shows the gr
refinement analysis and other information watk- 0.5 andb = 0.4.

In Table I,n is the number of grid lines in the- andy-directions;e is the error of the
computed solution in the maximum norm; is the total number of irregular grid points;
n, is the number of irregular grid points on one side, which is also the dimension of t
Schur complemenk is the number of iterations of the GMRES method, which is also th
number of the fast Poisson solver called. We observe a second order rate of converg
in the maximum norm. The number of iterations for the GMRES iteration is proportion
to logh. Note that the error may not be reduced exactly by a factor of four but rather m
fluctuate, as explained in [12].

Case2. The normal derivativd¢/an is prescribed 0@ 2; using the exact solution.
In this case, the solution is not unique and the compatibility condition must be imposec
order to obtain a reasonably accurate solution. To obtain a unigue solution, we specify
solution at one corner using the exact solution. In this way, we can measure the errc
the computed solution. Table Il shows the results of the grid refinement analysis. We h
results similar to those analyzed above.
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TABLE |
The Grid Refinement Analysis witha=0.5,b=0.4, andb=0.15

n a b e r n n, k
40 0.5 0.4 5.7116 104 100 52 16
80 0.5 0.4 1.459% 10 3.9146 204 104 17
160 0.5 0.4 3.523610° 4.1408 412 208 19
320 0.5 0.4 8.1638 10°° 4.3161 820 412 21
n a b e r n n, k
40 0.5 0.15 4.4826 1072 68 36 13
80 0.5 0.15 1.1466 103 3.9089 132 68 15
160 0.5 0.15 2.6159 104 4.3832 68 136 17
320 0.5 0.15 6.7733 10°° 3.8621 68 268 20

Note. Dirichlet boundary conditions are prescribed @R;, and Neumann boundary conditions are
prescribed 0 2,. Second order convergence is observed. The number of iterations is almost independen
of the mesh size.

TABLE Il
The Grid Refinement Analysis for Pure Neumann Type Boundary Conditions

n a b e r n n, k

40 0.5 0.15 45064 102 84 44 14

80 0.5 0.15 1.2529 103 3.5967 164 84 17
160 0.5 0.15 3.359% 104 3.7292 332 168 19
320 0.5 0.15 7.9409 10°° 4.2309 668 336 21

4. EVALUATION OF THE NORMAL VELOCITY OF THE SURFACE

Calculating the surface Laplacian operator along a curve in two dimensions is fz
straightforward. In higher dimensions, however, a nice parameterization of the hypersul
can be very difficult to maintain in a Lagrangian formulation and hence the surface Lapla
operator can be problematic in numerical computation. Since we are using a fixed Cart:
grid we will use a formula for the surface Laplacian operator in Cartesian coordinates.
are using the level set method to capture the moving interface and the geometry is embe
in the level set function. Our surface Laplacian operator thus must also be expressedin
of this level set function. We start with the two dimensional case and then extend it to
number of dimensions. Let be the tangential direction of the curve amtbe its normal
direction. Assumes is the arc length parameter. ff is a function that is defined in a
neighborhood of the curve, then the surface Laplaciah isf

d2f d T af a2 f
wherex is curvature and Hef) is the Hessian of . Therefore we have
2f  92f
Af =7THe(f)r+n"He(f)n= — + —

9tz 9n?’
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In general, letl" be ann — 1 dimensional hyper-surface iR" and f be a function de-
fined in a neighborhood df. Letey, e, ..., e, be a local coordinate frame &", where
e, &, ..., &1 areinthetangent plane bfande, is the normal of". The surface Laplacian
of fonTlis

of 92 f of 32 f
Asf = k— + — =k— + Af — —, (4.35)
e 2 0E e 0%

wherex is the mean curvature (sum of the principal curvatures) of the surface. In the le
set formulation, with the surface defined by the zero level set of

v v of v ’f Vv

v Y0 Ve M _ Ve o F_ Vel Ve

Vol Vol d&n Vol 0e Vo Vol
If f=«xk=V. ‘% is the mean curvature of the level set function we obtain a fourth ord
nonlinear PDE for the level set formulation of surface diffusion of the mean curvature flc
There is very little analysis for this PDE as far as we know. If the level setsaoé parallel,
i.e.,|Vg| =constant, then

92 f Vo Vo

_=en~V(en-Vf)=—-V< Vf).
oeg Vol \ Vgl

If fisconstantinthe normal direction, i.&.f -e, =0, we havedf/de, =0. Numerically

if we can makep a distance function (through the re-initialization process) and exfend

such thatv f - Vo =0 (see [17]), then we have

Asf = Af,

which is very easy to compute on a Cartesian grid. For accuracy we prefer to use (4.3t
our numerical computation.

4.1. Evaluation of the Surface Velocity due to the Electrical Potential

The electric potential function is only defined outside of the voids. However, for tt
level set formulation, we need the velocity field in a thin tube surrounding the interfac
The difficulty is that we do not have any information inside the voids and the comput
potential is only second order accurate near or on the interface where the error of
potential is not smooth. As a result, oscillations in the velocity will be present after secc
order differentiation. Such oscillations will also affect the choice of the time step and al
conservation (see Section 4.3 as well). Our strategy is to use a second order extrapol
to extend the information outside of the voids to the irregular grid points inside, and tr
to compute the derivative along the tangential direction to obtain the normal velocity of t
surface due to the variation in the electric potential. There are a variety of choices a
when and how to do the extrapolation along the normal direction and differentiating alc
the tangential direction. The scheme used in our simulation is the following:

e Use the standard central scheme to compute

¢ 3¢ d¢
- 4.36
as — ax T ay x (4.36)

atregular grid points which lieinsidethe computational tube boutsidethe voids.
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o Use the weighted least squares interpolation to ob},%iat allirregular grid points,
both inside and outside the voids by extrapolation and interpolation, respectively.

° Extend% from the interface along the normal directiono all grid points as well as
to those points which are located inside the void within the computational tube using

formula
2 W\ Ve

Here signip) is the sign function op. It switches the direction of information propagatior
along characteristics at the interface. For more information on velocity extension, see
[6, 13, 17, 22].

e Finally, use the standard central scheme to compute the part of the surface vel
due to the electric potential

d [0 a (9 a [0
9(2 =—— 9 ny + — 9 Ny. (4.38)
ds \ ds ax \ ds ay \ 9s
For two dimensional surface diffusion problems, the total internal area of voids shc
remain unchanged, by the consideration

82
//V~udxdy=]{VndSZf@(C1¢+C2K)dSE 0.

In our method, the surface velocity is proportional to the tangential derivative of a functi
Theoretically and numerically this approach preserves the area better than the approac
extends the velocity after it is computed at or near the interface.

4.2. Evaluation of the Surface Velocity due to the Curvature

In two dimensions, it is relatively straightforward to evaluate the surface velocity due
the variations in curvature since the curvature is defined at all grid points. It can be don
finding the second directional derivative of the curvature; see (4.36) and (4.38). Since
computational process involves fourth order derivatives of the level set, one may be ternr
to use a fourth order scheme to compute the first order derivatives, a third order schet
compute the second order derivatives, and so forth. While this approach is sound in princ
it results in larger errors compared with the standard central difference scheme and rec
a larger width for the computational tube used in the local level set method. The time
size also needs to be cut to keep stability. Furthermore, with wider support and fourth c
derivatives, special care must be taken to handle the boundary conditions of the v
Numerically, a high order method does not give better results in our case because erro
be amplified and oscillations can occur at or near the interface. We find that the stan
central difference scheme, also used in [1] for etching and deposition problems, w
best in our numerical experiment. In fact, it can be shown that, if a function is sufficier
smooth, the computed fourth order derivatives using the standard central difference sc
are second order accurate. In [1], a two dimensional model involving only surface diffus
terms is considered. There are no topological changes in the geometry.

After we computed the normal velocity of the boundaries of the voids, we used
weighted ENO (essentially non-oscillatory) scheme to update the level set function
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perform the re-initialization process. The WENO scheme is more stable and accurate
the errors are smoother than those of the ENO scheme (see [8]).

4.3. Choosing Adaptive Time Step Steps

The CFL condition for the surface diffusion is
Aty < h*/C,. (4.39)
The CFL condition for the Hamilton—Jacobian equation in updating the velocity is
Aty < h/Unax (4.40)

whereUnaxis the largest magnitude of the normal velocity in the computational tube. Sin
the electrical potential is the inversion of the Laplacian operator, the CFL condition for
surface diffusion is

Ats < h?/Cy. (4.41)

The adaptive time step is chosen from the smallest of the three for the explicit meth
Usually C; is relatively small compared witk;, and the time step is tolerable for the
simulations on most workstations. However, it is known that the desired level set funct
is the signed distance function. Such a level set function has kink at some points or al
a curve whergV¢| is not well defined (see Fig. 4). When the computational tube contail
those points, the calculations are not correct at those points since the derivatives dc
exist. The normal velocity can have very large magnitudes at these points, leading to \
small time step sizes and sometimes instabilities. Another mathematical concern is, a
pointed out in the Introduction, that if each level set function moves according to its o\
geometry and motion law independently the sets will run into each other due to the lacl
a maximum principle in this problem. Our numerical solution to this problem is to use
cut-off functionw (x),

1 ifx<0
wX) = { (X —1*20x3 4+ 10x> + 4x + 1) ifo<x<1 (4.42)
0 if 1 < X.

The new velocity is defined as

UQ9W=w("”' (S_%)Un. (4.43)

In a very thin tube containing the interfade| < o, the normal velocity is unchanged. Itis

gradually lowered to zero to take care of the troublesome points without a significant eff
on accuracy. We choose= 3h andgy is between B and 4 in our numerical tests. Notice

that we used a cut-off function with up to third order continuous derivatives, in an effort
reduce the oscillations introduced by the cut-off near the boundary. Numerically speaki
the level set function provides body fitted parallel frames (level sets) near the interface wt
can capture both the geometry and the motion of the interface on a Euclidean framew
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Trouble points where [V ¢ - 11 >>0
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FIG. 4. Grid points shown as open circles indicate points that are either on or close to the kink of the sig
distance function; the solid dots are projections of irregular grid points on the interface.

Physically and mathematically, what really matters is just the motion of level sets v
close to the interface. Due to a numerical CFL condition and correct scaling of the I¢
set function (distance function) the level set formulation is guaranteed to be trouble {
The reason why we use a cut-off function instead of extending the normal velocity i
enforce area conservation, as we mentioned before. Our approach effectively eliminate
possibility of having overlarge normal velocities near the kink of the level set function n
the interface.

Remark4.1. When topological changes take place, we can no longer cut off the ki
The calculation may lose some accuracy at those points. On the other hand, we
some mathematical insights before we can fix the problem numerically. Some diffe
approaches combining perturbation techniques, the particle method, and/or the bou
integral method with the level set formulation are under investigation.

5. NUMERICAL EXPERIMENTS

We have performed a series of numerical experiments on the interaction of voids du
the electro-migration process in an attempt to draw some physical insights from tt
experiments. For all the tests shown here, we used Neumann boundary conditions (flt
the left and right edges of the rectangles, and homogeneous Neumann boundary conc
at the top and bottom of the rectangles.
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FIG. 5. A void evolution with large chemical potential. The motion is relatively stable.

In the first two experiments, we try to reproduce the results from [20]. The computatiol
domain is the rectangle2.5 < x <2.5,-0.5 <y <0.5. The initial void is a circle centered
at (—1.5, 0) with radiug = 0.25. In the first case, the coefficients of the potentials are take
to beC; =0.625 andC, = 0.625x 6.25x 102, corresponding to the parameters chosel
in [20]. The computational grid is 30060, orh=1/60. Figure 5 shows the evolution
of the void with time. For this test problem, the surface tension is relatively large and 1
configuration is stable. The relative area change for this case is less than 0.0619%.

In the second case see (Fig. 6), the coefficient of the chemical pot&yiall.875 x
2.08333x 1074, is small compared to that of the electrical potent@l= 1.875, and the
motion is less stable than that in the first case. The grid spacihg=i$/100. The area
loss is about 6% just before the void breaks up. Our simulation has gone beyond the re:
obtained in [20]. The evolution process seems to agree with the results in that paper L
some time by comparing the graphs there. Note that we used Neumann boundary condi
at the left and right edges of the rectangle while Dirichlet boundary conditions were us
in [20]. Usually it is harder to solve Poisson equations with Neumann boundary conditic
than with those of Dirichlet type.

As discussed in [20], the stability of the void shape depends on the ratio between the c
ing force associated with the surface energy and that associated with the electro-migra
For fixed line geometry and void size, this ratio is proportion&1gC,. Our first two test
cases, which essentially reproduce the corresponding examples given in [20], demons
that a nearly circular void shape is stable wi® C; =6.25x 10~2 and unstable at a
smaller ratio wherC,/C; =2.08333x 10~*. In the first test case, and for all cases with
largerC,/Cy, the nearly circular void shape is stable because the dominating driving fol
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FIG. 6. A void evolution with small chemical potential. The motion is less stable.

is the surface energy, which tends to resist deviation from the circular shape. In the se
case, and for all cases with smal@&s/C;, electro-migration forces become dominant an
cause drastic deviations from the circular void shape. Figure 7 shows an evolution prc
with even smallelC,/C;. The calculation was done with a coarse ghd; 1/50. While
we see more loss in the area, we see a similar pattern in the evolution process. The
in the area is due to the poor resolution and the large curvatures that appear immed
following topological change.

The algorithm developed here can be used to study the interactions of multiple voic
an electro-migration line. Figure 8 shows the evolution process of two voids. The first
is a circle centered at(2.1, 0) with radius 0.15. The second circle is centered-at%5, 0)
with radius 0.3. The coefficient of the chemical potential is choselyas3.9062x 10~°
and the coefficient of the electrical potential 1.875, with the r@tpC, = 2.08 x 1072 in
the range of instability. The electrical potential is dominant and the motion is toward a v
unstable pattern with the creation of a number of small voids from the larger voids thro
shape instabilities. In this cade= 0.01 and the area change is less than 2.7%. Most of t
loss in the area occurs after small voids are produced. The large curvature of the small:
compensates for the small chemical potential coefficiemelative to the electro-migration
coefficientC;. This is not unexpected because a snallC; indicates shape instability
of large voids, which tend to break up to into smaller voids in order to seek a bala
between the driving force associated with the surface energy and that associated wit
electro-migration. The same argument would indicate that conditions of €xydll; tend
to prevent merger of voids into larger ones, which is consistant with our observation:
this simulation, we see also that small voids move faster than large ones.
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FIG. 7. A void evolution with very small chemical potential on a coarse grid.

It appears that the interaction of voids evolves toward an energetic balance betweer
surface tension and electro-migration. We have already seen thatlarger voids tend to bre
into smaller ones. If the surface tension force is sufficiently large, two or more smaller vo
may merge to form larger voids, as is demonstrated in Fig. 9, where w&tak®.0391
andC; = 1.875. In the simulationh = 1/60. Initially the voids are two ellipses: The first
one is centered at (0.35, 0.5) with=0.2 andb=0.14, wherea is the major and is the

0.5 0.5
=0 t = 0.0050
1 O |+ &
-0.5 -0.5
-2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5
0.5 0.5 >
t=0.0073 t=0.0113
) o
S )
°
0.5 -0.5
-2.5 -2 -1.5 -1 -0.5 -2.5 -2 -1.5 -1 -0.5

FIG. 8. An evolution process of two voids with small chemical potentials.
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FIG. 9. An evolution process of two voids with large chemical potentials.

minor axis. The ellipse to the right is centered at (0.65, 0.5) aith0.24 andb = 0.12. The
area change is about 10%, which is much worse than the values in our previous case
believe there are two factors which affect the loss of the area: The major factor is thle, lar
which, of course, means lack of resolution in the simulation. For problems involving fou
order derivatives, we find that reasonable resolution is necessary to preserve the are:
second factor is the singularity before or after the topological changes, i.e., the merg
where some parts of the level set have very large curvatures.

Figure 10 shows the interaction of two voids under a relatively |&g#C, ratio. The
first one is an ellipse centered atZ.1, 0) with the major axis.@ and the minor axis 0.2.
The force coefficients ar€; = 1.875 andC, = 0.007324. The void to the right is a circle
centered at-{1.5, 0) with radius @. The electric field becomes concentrated between t
boundary of the conducting line and the larger void. Due to this concentration, the uj
and lower tips of the larger void are driven faster than the medium portion and the smi
void is shielded from the electric field by the presence of the large void. As a result,
large void wraps around the small void without breaking up into smaller voids. The ¢
demonstrates the strong shielding effect of larger voids when they are relatively stable

As a final example, we investigate the effect of initial shape of a void. Figure 11 shc
the evolution process of an ellipse centered-at.g, 0) with the major axis 0.4 and the
minor axis 0.2. The coefficients af = 1.875 andC, = 0.3.90625x 10-3. The surface
tension force tends to smooth the void shape into a circle. The effect of electrical poter
on the other hand, causes a protrusion of the void with a relatively large curvature a
frontal tip of the void. This sharp tip moves rapidly under the electro-migration forces ¢
drags the rest of the void along. Such a worm-like motion of void demonstrates ano
delicate balance between surface tension and electro-migration forces.
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FIG. 10. An evolution process of two voids with large chemical potentials.
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6. CONCLUSION

Inthis paper, we have described a numerical method for the simulation of moving inter
problems which arise in electro-migration voiding in integrated circuits. In comparison w
a conventional finite element- or a boundary element-based numerical method with ada
meshing, our method has the advantage of employing a fixed Cartesian grid withou
need of re-meshing at each time step. A fast iterative method using the GMRES iter:
has been adopted to solve the Laplace equations associated with electric potential ¢
exterior of voids. The evolution of void boundaries is described by a two dimensional le
set function which is updated at each time step according to surface diffusion equa
governed by combined driving forces associated with surface tension and electric pote
The level set method is used to efficiently update the motion of voids and is capabl
capturing complex topological changes of voids such as void merging and void bre
up. Our numerical examples have reproduced and gone beyond some test cases
literature using a finite element-based simulation method. We have also performed a s
of numerical experiments to elucidate the mechanisms by which electro-migration v
interact. It appears that the interaction of multiple voids tends to evolve the shape and
of the voids into a state in which the surface tension is better balanced with the ele
migration force. This is demonstrated in examples where small voids dominated by sur
tension tend to merge into larger voids while large voids dominated by electromigra
forces tend to undergo an instability and break up into smaller voids. Also, the motiol
small voids could be significantly retarded by large voids in their vicinity as the elect
field at small voids is shielded by the large voids, especially when the sizes of the v
are on the order of the conducting line width. The method that we propose does not re
a sophisticated meshing technique and makes a relatively low demand on computat
resources. All the simulations involve interaction of multiple voids and can be done rap
on common workstations. It is also relatively straightforward to generalize the metho
three dimensional simulations where the computational savings over re-meshing is exp
to be even more significant.

It is true that for fourth order differential equations, the time step limitation is still
concern for explicit algorithms. An implicit or semi-implicit level set method is unde
investigation. Adaptive Cartesian grid refinement techniques will be considered als
further development of the method discussed in this paper.
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